Деление бактериальной клетки надвое. Деление бактериальных клеток

Обычно деление бактериальных клеток описывается как "бинарное": после удвоения нуклеоиды, связанные с плазматической мембраной, расходятся за счет растяжения мембраны между нуклеоидами, а затем образуется перетяжка или септа, делящая клетку надвое. Этот тип деления приводит к очень точному распределению генетического материала, практически без ошибок (менее 0,03 % дефектных клеток). Напомним, что ядерный аппарат бактерий, нуклеоид, представляет собой циклическую гигантскую (1,6 мм) молекулу ДНК, образующую многочисленные петлевые домены в состоянии сверхспирализации, порядок укладки петлевых доменов не известен.

Среднее время между делениями бактериальных клеток составляет 20-30 мин. А это период должен произойти целый ряд событий: репликация ДНК нуклеоида, сегрегация, отделение сестринских нуклеоидов, их дальнейшее расхождение, цитотомия за счет образования септы, делящей исходную клетку ровно пополам.

Весь ряд этих процессов находится под интенсивным вниманием исследователей последних лет, в результате были получены важные и неожиданные наблюдения. Так оказалось, что в начале синтеза ДНК, который начинается с точки репликации (origin), обе растущие молекулы ДНК изначально остаются связанными с плазматической мембраной. Одновременно с синтезом ДНК происходит процесс снятия сверхспирализации как старых, так и реплицирующихся петлевых доменов за счет целого ряда ферментов (топоизомеразы, гиразы, лигазы и др), что приводит к физическому обособлению двух дочерних (или сестринских) хромосом-нуклеоидов, которые еще находятся в тесном контакте друг с другом. После такой сегрегации нуклеоидов происходит их расхождение от центра клетки, от места их бывшего расположения. Причем это расхождение очень точное: на четверть длины клетки в двух противоположных направлениях. В результате этого в клетке располагаются два новых нуклеоида. Каков механизм этого расхождения? Делались предположения (Деламатер, 1953), что деление бактериальных клеток аналогично митозу эукариот, однако данных в пользу этого предположения долгое время не появлялось.

Новые сведения о механизмах деления бактериальных клеток были получены при изучении мутантов, в которых происходили нарушения клеточного деления.

Было обнаружено, что в процессе расхождения нуклеоидов принимают участие несколько групп специальных белков. Один из них, белок Muk В, представляет собой гигантский гомодимер (мол.масса около 180 кДа, длина 60 нм), состоящий из центрального спирального участка, и концевых глобулярных участков, напоминающий по структуре нитевидные белки эукариот (цепь миозина II, кинезина). На N-конце Muk В связывается с ГТФ и АТФ, а на С-конце — с молекулой ДНК. Эти свойства Muk В дают основания считать его моторным белком, участвующим в расхождении нуклеоидов. Мутации этого белка приводят к нарушениям расхождения нуклеоидов: в мутантной популяции появляется большое количество безъядерных клеток.

Кроме белка Muk В в расхождении нуклеоидов, по-видимому, участвуют пучки фибрилл, содержащих белок Caf A, который может связываться с тяжелыми цепями миозина, подобно актину.

Образование перетяжки, или септы также в общих чертах напоминает цитотомию животных клеток. В данном случае в образовании септ принимают участие белки семейства Fts (фибриллярные термочувствительные). Это группа из нескольких белков, среди которых наиболее изучен белок FtsZ. Этот белок сходен у большинства бактерий, архибактерий, обнаружен в микоплазмах и хлоропластах. Это глобулярный белок, сходный по своей аминокислотной последовательности с тубулином. При взаимодействии с ГТФ in vitro он способен образовывать длинные нитчатые протофиламенты. В интерфазе FtsZ диффузно локализуется в цитоплазме, его количество очень велико (5-20 тыс. мономеров на клетку). Во время деления клетки весь этот белок локализуется в зоне септы, образуя сократимое кольцо, очень напоминающее акто-миозиновое кольцо при делении клеток животного происхождения.

22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.

Мутации по этому белку приводят к прекращению деления клеток: возникают длинные клетки, содержащие множество нуклеоидов. Эти наблюдения показывают прямую зависимость деления бактериальных клеток от наличия Fts-белков.

Относительно механизма образования септ существует несколько гипотез, постулирующих сокращение кольца в зоне септы, приводящее к разделению исходной клетки надвое. По одной из них протофиламенты должны скользить один относительно другого с помощью неизвестных еще моторных белков, по другой — сокращение диаметра септы может происходить за счет деполимеризации заякоренных на плазматической мембране FtsZ.

Фазы размножения культуры бактерий в стационарных условиях

Последняя фаза роста - стационарная фаза, которая вызвана истощением питательных веществ. Клетки сокращают свою метаболическую деятельность и потребляют несущественные клеточные белки. Стационарная фаза - это переход от быстрого роста к стрессовому состоянию, которое характеризуется увеличением экспрессии генов, которые принимают участие в ремонте ДНК и антиоксидантном метаболизме.

При размножении бактерий не в проточных, а в стационарных условиях происходит изменение питательной среды и накопление в ней продуктов жизнедеятельности бактерий, вследствие чего меняются и их физиологические особенности. Так, молодые клетки Clostridium acetobutylicum не способны образовывать ацетон; это свойство они приобретают в более старой культуре. Если спороносных бактерий выращивать в условиях проточной культуры, они будут делиться, но не будут давать спор. При выращивании бактерий на плотных питательных средах они образуют скопления клеток разных размеров, формы, цвета, называемые колониями.

Штамм бактерий, чистая культура
Особенности полового размножения
Типы бесполого размножения, термины
Глоксиния, виды, заболевания
Влияние гормонов на организм
Этапы гликолиза
Пентозомонофосфатный путь окисления глюкозы
Цикл Кребса

Деление бактерий

Деление бактерий наступает в результате формирования межклеточной перегородки, которое происходит следующим образом. В том участке ЦМ, с которым связана с помощью особого рецептора молекула ДНК (хромосома, плазмида), происходят события, инициирующие процесс репликации, в результате которого вновь образующаяся дочерняя молекула ДНК прикрепляется также к рецептору на ЦМ.

Область последней между двумя рецепторами, к одному из которых прикреплена родительская, а к другому - дочерняя ДНК, начинает удлиняться, в результате этого расстояние между ними все время увеличивается в течение времени. По завершении процесса репликации строго по экватору между отделившимися друг от друга хромосомами начинает формироваться межклеточная перегородка путем встречной инвагинации (врастания навстречу друг к другу) ЦМ и связанной с ней области клеточной стенки.

В результате слияния инвагинирующих участков ЦМ и КС образуется межклеточная перегородка, и родительская клетка разделяется на две дочерние клетки равной длины, функцию аппарата митоза у бактерий выполняет ЦМ путем своего удлинения, которое раздвигает хромосомы (и плазмиды) таким образом, что они оказываются по ту и другую стороны формирующейся межклеточной перегородки в равных соотношениях.

Результатов нарушения генетического контроля клеточного деления может быть по крайней мере два. Если формирования межклеточной перегородки не происходит, возникают длинные нитевидные формы. Однако при восстановлении нарушенного механизма такого контроля нити делятся на фрагменты, равные по длине нормальным клеткам. В некоторых случаях нарушение контрольных механизмов приводит к тому, что вместо одной межклеточной перегородки, формирующейся по экватору, происходит образование одной или двух перегородок, каждая из которых локализована ближе к своему полюсу.

Поскольку в этом случае формирование перегородки не связано с сегрегацией хромосом, образуются так называемые мини-клетки, лишенные хромосом, которые остаются в родительской клетке. Мини-клетки могут осуществлять различные биохимические процессы, поскольку они содержат ферменты, но они не способны к размножению, так как лишены хромосом.

Помимо мини-клеток вследствие различных неблагоприятных воздействий из бактерий могут образовываться так называемые нанно-клетки, т. е. мельчайшие клетки размером 0,2-0,3 мкм. Их описывали под различными названиями: фильтрующиеся формы бактерий, элементарные тельца, ультрамикробактерии.

Деление бактериальной клетки

Чаще всего они образуются при L-трансформации бактерий.

Поскольку размеры таких клеток удобнее выражать в нанометрах, а не в долях микрометра, их стали называть наноклетками. Образование наноклеток - универсальная ответная реакция бактерий на неблагоприятные условия существования.

Не нашли подходящую информацию? Не беда! Воспользуйтесь поиском на сайте в верхнем правом углу.

1. Какие способы деления характерны для клеток эукариот? Для прокариотических клеток?

Митоз, амитоз, простое бинарное деление, мейоз.

Для клеток эукариот характерны следующие способы деления: митоз, амитоз, мейоз.

Для прокариотических клеток характерно простое бинарное деление.

2. Что представляет собой простое бинарное деление?

Простое бинарное деление характерно только для клеток прокариот. Бактериальные клетки содержат одну хромосому – кольцевую молекулу ДНК. Перед делением клетки происходит репликация и образуются две одинаковые молекулы ДНК, каждая из них прикреплена к цитоплазматической мембране. Во время деления плазмалемма врастает между двумя молекулами ДНК таким образом, что в итоге разделяет клетку надвое. В каждой образовавшейся клетке оказывается по одной идентичной молекуле ДНК.

3. Что такое митоз? Охарактеризуйте фазы митоза.

Митоз – основной способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются две дочерние с таким же набором хромосом. Для удобства митоз подразделяют на четыре фазы:

● Профаза. В клетке увеличивается объём ядра, начинает спирализоваться хроматин, в результате чего формируются хромосомы. Каждая хромосома состоит из двух сестринских хроматид, соединённых в области центромеры (в диплоидной клетке – набор 2n4c). Растворяются ядрышки, распадается ядерная оболочка. Хромосомы оказываются в гиалоплазме и располагаются в ней беспорядочно (хаотически). Центриоли попарно расходятся к полюсам клетки, где инициируют образование микротрубочек веретена деления. Часть нитей веретена деления идёт от полюса к полюсу, другие нити прикрепляются к центромерам хромосом и способствуют их перемещению в экваториальную плоскость клетки. В клетках большинства растений центриоли отсутствуют. В этом случае центрами образования микротрубочек веретена деления являются особые структуры, состоящие из мелких вакуолей.

● Метафаза. Завершается формирование веретена деления. Хромосомы достигают максимальной спирализации и располагаются упорядоченно в экваториальной плоскости клетки. Образуется так называемая метафазная пластинка, состоящая из двухроматидных хромосом.

● Анафаза. Нити веретена деления укорачиваются, в результате чего сестринские хроматиды каждой хромосомы отделяются друг от друга и растягиваются к противоположным полюсам клетки. С этого момента разошедшиеся хроматиды называются дочерними хромосомами. У полюсов клетки оказывается одинаковый генетический материал (у каждого полюса – 2n2c).

● Телофаза. Дочерние хромосомы деспирализуются (раскручиваются) у полюсов клетки с образованием хроматина. Вокруг ядерного материала каждого полюса формируются ядерные оболочки. В двух образовавшихся ядрах возникают ядрышки. Нити веретена деления разрушаются. На этом деление ядра заканчивается, и начинается разделение клетки надвое. У клеток животных в экваториальной плоскости возникает кольцевая перетяжка, которая углубляется до тех пор, пока не произойдёт разделение двух дочерних клеток. Клетки растений не могут делиться перетяжкой, т.к. имеют жёсткую клеточную стенку. В экваториальной плоскости растительной клетки из содержимого пузырьков комплекса Гольджи образуется так называемая срединная пластинка, которая и разделяет две дочерние клетки.

4. Благодаря чему дочерние клетки в результате митоза получают идентичную наследственную информацию? В чём заключается биологическое значение митоза?

В метафазе в экваториальной плоскости клетки находятся двухроматидные хромосомы. Молекулы ДНК в составе сестринских хроматид идентичны друг другу, т.к. образовались в результате репликации исходной материнской молекулы ДНК (это произошло в S-периоде интерфазы, предшествующей митозу).

В анафазе с помощью нитей веретена деления сестринские хроматиды каждой хромосомы отделяются друг от друга и растягиваются к противоположным полюсам клетки. Таким образом, у двух полюсов клетки оказывается одинаковый генетический материал (2n2c у каждого полюса), который по завершении митоза становится генетическим материалом двух дочерних клеток.

Биологическое значение митоза заключается в том, что он обеспечивает передачу наследственных признаков и свойств в ряду поколений клеток. Это необходимо для нормального развития многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки организма генетически идентичны. Митоз обусловливает рост и развитие организмов, восстановление повреждённых тканей и органов (регенерацию). Митотическое деление клеток лежит в основе бесполого размножения многих организмов.

5. Количество хромосом - n, хроматид - с. Каким будет соотношение n и с для соматических клеток человека в следующих периодах интерфазы и митоза. Установите соответствие:

1) В G1-периоде каждая хромосома состоит из одной хроматиды, т.е. соматические клетки содержат набор 2n2с, что для человека составляет 46 хромосом, 46 хроматид.

2) В G2-периоде каждая хромосома состоит из двух хроматид, т.е. соматические клетки содержат набор 2n4с (46 хромосом, 92 хроматиды).

3) В профазе митоза набор хромосом и хроматид – 2n4c, (46 хромосом, 92 хроматиды).

4) В метафазе митоза набор хромосом и хроматид – 2n4c (46 хромосом, 92 хроматиды).

5) В конце анафазы митоза вследствие отделения сестринских хроматид друг от друга и их расхождения к противоположным полюсам клетки, у каждого полюса оказывается набор 2n2с (46 хромосом, 46 хроматид).

6) В конце телофазы митоза формируются две дочерние клетки, каждая содержит набор 2n2c (46 хромосом, 46 хроматид).

Ответ: 1 – В, 2 – Г, 3 – Г, 4 – Г, 5 – В, 6 – В.

6. Чем амитоз отличается от митоза?

Деление прокариотических клеток

Как вы думаете, почему амитоз называют прямым делением клетки, а митоз - непрямым?

В отличие от митоза при амитозе:

● Происходит деление ядра перетяжкой без спирализации хроматина и образования веретена деления, отсутствуют все четыре фазы, характерные для митоза.

● Наследственный материал распределяется между дочерними ядрами неравномерно, случайным образом.

● Часто наблюдается только деление ядра без дальнейшего разделения клетки на две дочерние. В этом случае возникают двуядерные и даже многоядерные клетки.

● Затрачивается меньше энергии.

Митоз называют непрямым делением, т.к. по сравнению с амитозом он представляет собой достаточно сложный и точный процесс, состоящий из четырёх фаз и требующий предварительной подготовки (репликации, удвоения центриолей, запасания энергии, синтеза специальных белков и т.д.). При прямом (т.е. простом, примитивном) делении – амитозе ядро клетки без какой-либо специальной подготовки быстро делится перетяжкой, и наследственный материал случайным образом распределяется между дочерними ядрами.

7. В ядре неделящейся клетки наследственный материал (ДНК) находится в виде аморфного рассредоточенного вещества - хроматина. Перед делением хроматин спирализуется и образует компактные структуры - хромосомы, а после деления возвращается в исходное состояние. Для чего клетки совершают такие сложные видоизменения своего наследственного материала?

ДНК в составе аморфного и рассредоточенного хроматина при делении было бы невозможно точно и равномерно распределить между дочерними клетками (именно такая картина и наблюдается при амитозе – наследственный материал распределяется неравномерно, случайным образом).

С другой стороны, если бы клеточная ДНК всегда находилась в компактизированном состоянии (т.е. в составе спирализованных хромосом), с неё было бы невозможно считывать всю необходимую информацию.

Поэтому клетка в начале деления переводит ДНК в максимально компактное состояние, а после завершения деления возвращает в исходное, удобное для считывания.

8*. Установлено, что у дневных животных максимальная митотическая активность клеток наблюдается вечером, а минимальная - днём. У животных, ведущих ночной образ жизни, клетки наиболее интенсивно делятся утром, ночью же митотическая активность ослаблена. Как вы думаете, с чем это связано?

Дневные животные активны в светлое время суток. Днём они затрачивают много энергии на передвижение и поиск пищи, при этом их клетки быстрее "изнашиваются" и чаще погибают. Вечером, когда организм переварил пищу, усвоил питательные вещества и накопил достаточное количество энергии, активизируются процессы регенерации и, прежде всего, митоз. Соответственно, у ночных животных максимальная митотическая активность клеток наблюдается утром, когда их организм отдыхает после активного ночного периода.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Дашков М.Л.

Бактерии самая древняя форма жизни на земле. Появились на планете около 3,8-3,6 миллионов лет назад. Агрессивные климатические условия сделали их выносливыми и стойкими к выживанию. Древнейшим существом будут цианобактерии.

Именно они поспособствовали накоплению в атмосфере кислорода. Наш организм состоит из многочисленных их видов. Различают полезные и вредные типы. Обитают везде: в воде, в воздухе, в человеке и животных существах, в слоях почвы.

Объем колоний зависит не только от строения, но и от того как происходит деление бактерий. Строение примитивное. Аппарат представляется слизистой капсулой или мембраной. Микроорганизм состоит из всего-то одной живой клетки.

В цитоплазме нет митохондрий и пластид. У большинства микробов есть жгутики и усики, с помощью них они и передвигаются по крови, сосудам и тканям. Являются прокариотами, то есть в них нет ядра.

Это значит, что микрочастицы ДНК скапливаются в определенной части цитоплазмы. Имеют название нуклеотиды. Нуклеотиды своеобразный род ядра, в нем то и содержится информация. ДНК хранит сведения в сжатом виде. При ее разворачивании длина достигает 1 мм.

Размножение бактерий происходит путем деления.

Следует знать, что бактерии размножаются только при наличии благоприятных факторов, каких рассмотрим ниже.

Для их роста нужны:

  1. свет;
  2. температура;
  3. наличие кислорода;
  4. влажность;
  5. фактор щелочности и кислотности;

У медиков интерес вызывает температурные условия. Для того, чтобы клетки делились требуется определенная температура. Некоторые классы при очень низкой впадают в состояние анабиоза или спячки, другие же только при высокой не могут продолжить свой рост и разрушаются.

Если одних можно убить кипячением воды, другие прекрасно себя чувствуют, также и с замораживанием. Среди этого предела есть средние условия при которых может осуществляться максимальное развитие с высокой скоростью. Нужная температурная фаза от 23 до 30 градусов, для течения патогенной флоры требуется 38 градусов.

В этой среде плодятся бактериальные простейшие. В идеальных условия прокариоты способны производить 34 триллиона потомков за сутки. Состояние взросления происходит где-то за 20 минут. К счастью живут они не долго, несколько минут или часов.

Что нужно для некоторых микроорганизмов?


Стафилококковая группа нуждается в аргинине и лецитине. Стрептококки в фосфолипидах. Шигеллам, корине бактериям нужна подпитка никотиновая кислота. Золотистый стафилококк, пневмококк, бруцеллез не сможет без витамина Б1, а вот прототрофы сами синтезируют необходимое.

Пути созревания


Как говорилось ранее развитие простейших осуществляется путем деления.

Оно бывает:

  • простым;
  • почкованием;
  • конъюгацией, половым путем;

Простой путь

При первом методе бактерии могут плодиться равновеликим поперечным делением. Материнские клетки после удваивания нитей ДНК и органелл образуют две части, а именно дочерние клетки. Генетический код сформирован аналогично материнскому.

Они как бы клонируют сами себя. В течение суток из одной клеточки выходит 70 поколений. Если предположить, что все они могли жить, масса составила более 5 тонн. Конечно такое невозможно в природе.

Вегетативный этап

Или проще почкование обозначается тем, что существа выращивают на одном из полюсов вторую почку, то есть себя. При ответвлении наступает разрыв нитей ДНК. Именно гетероцисты участвуют в процессе. К такому методу прибегают цианобактерии и колониальные породы.

Таким образом прокариоты могут вырастить до 4 почек, после чего наступает старение и гибель. Кокковые колонии отделяясь свободно идут в рост.

Спорообразование


Есть раздвоение спорами.

Каким образом происходит?

Бациллы репродуцируют себя таким образом при наступлении неблагоприятных условий внешней и внутренней среды. Внутри споры делается особа среда, приостанавливается механизм жизни, уменьшается уровень воды. Если бацилла попала в такое состояние ей не страшен холод, жара, излучения разной этиологии, химические средства.

Как только улучшаются факторы выходят молодые прокариоты. Цикл становится очень длительным. Науке даже известны случаи когда ученые находили простейших, которым десятки, а то и сотни лет.

Половой путь


Конъюгация происходит у бактерий живущих преимущественно в человеческом организме, либо теле животного. Здесь две формы соприкасаются друг с другом и начинается обмен данными. Называется генетическая рекомбинация, образование новых видов.

Половым способом размножаются бактерии кишечной палочки и остальные грамположительные и грамотрицательные типы. Если отсутствует истинное направление то такой обмен между ними является полезным и мочь поспособствовать развитию устойчивости к антибиотикам и другим лекарственным препаратам.

Инциститация


Еще один путь защиты от агрессивных обстоятельств преобразование в цист. Цисты обозначают пузырьки в толстой оболочке. Находится в таком положении бациллы могут очень долго. Даже 200 градусов по Цельсию не уничтожит их. Далее при положительных причинах они выходят наружу делясь бинарно.

Так, что приемы приумножения возбудителей подчиняются внешней среде. Недостаток воды, большое содержание кислорода в воздухе, лишение высокопитательных микроэлементов. Низкие или высокие перепады температур заставляют прибегнуть к спорообразованию, инцистированию.

Степень бактериальной популяции


Живя в благоприятных условиях клетки находятся на исходной стадии, начальной. Средняя продолжительность 1-2 часа. Задержание роста, занимает примерно пару часов. При логарифмическом периоде бациллы могут размножаться в быстром порядке, пик достигается через 6 часов.

Отрицательное ускорение, когда истощаются питательные запасы микроэлементов и веществ. Стационарная ступень, погибшие особи заменяются новыми уже через два часа. Этап ускоренной гибели, бациллы гибнут через каждые 3 часа. Логарифмический фазис, отмечается постоянная смерть, составляет 6 часов.

Снижение скорости смерти, на этом моменте оставшиеся живые клеточки переходят в состояние покоя.

Многоклеточная стадия


Одноклеточная фаза способна делать все функции организма, на это не влияют соседствующие рядом микроорганизмы. Одноклеточные образовывают клеточные агрегаты, они скрепляются слизью.

Часто появляется скопление бацилл в одну ветвь. Так микобактерии развивают цисты, получается своеобразный обмен. Явление служит пред посылом к многоклеточному формированию. К ним относятся цианобактерии, актиномицеты.

Каким требованиям должны отвечать особи:

  1. агрегированностью клеток;
  2. разделением свойств между ними;
  3. установка должного контакта между особями;

У нитчатых особей структура описана в клеточной стенке, создает взаимосвязь между индивидуумами. Обмен у бактерий происходит веществами и энергией. Некоторые нитчатые помимо вегетативных особей содержат дифференциальные гетероцисты или акинеты.

Локализация

В зависимости от разбивки бациллы имеют определенные виды скоплений:

  • шаровидные;
  • спиралевидные;

Первые обнаруживаются в паре или по одному, это диплококки, микрококки, стафилококки. Могут выглядеть как веточки винограда, цепочки. Спиралевидные, разбросаны в хаотичном порядке, к ним причисляются лептоспирозы, вибрио.


Скорость роста бактерий зависит как от внешних условий, так и от физиологических особенностей самой клетки. При наличии благоприятных условий рост бактериальной клетки завершается размножением. Основным способом размножения большинства бактерий является простое деление клетки пополам. Делению предшествует репликация (удвоение) хромосомы. Эти два процесса тесно взаимосвязаны. Частота репликации регулируется скоростью роста клетки. Репликация бактериальной хромосомы осуществляется описанным ранее способом (см. п. 3.2.5).
Изучение закономерности равномерного распределения генетического материала между дочерними клетками, образовавшимися в результате деления материнской клетки, позволило Г. Жакобу, С. Бреннеру и Т. Кузену (1963) сформулировать концепцию репликона. Репликон - единица репликации, это участок ДНК, содержащий регуляторные элементы, необходимые для независимой репликации. У бактерий таковым являются хромосома и плазмиды. Каждый репликон содержит не менее двух локусов, участвующих в контроле репликации: структурный ген-репликатор (ген-инициатор), детерминирующий синтез белка-инициатора и специальный сайт-репликатор, который распознает сигналы на начало удвоения хромосомы.
После некоторого периода роста клетка достигает определенного физиологического состояния. Из цитоплазматической мембраны в репликон поступают сигналы о необходимости репликации хромосомы и готовности клетки к делению. Под влиянием сигналов активизируется деятельность структурного гена и синтезируется белок-инициатор. Он, воздействуя на репликатор, запускает репликацию.
Между системой репликации хромосомы и делением клетки существует координированное взаимодействие: делению клетки всегда предшествует удвоение хромосомы. После завершения репликации начинается процесс деления клетки. У грамположительных бактерий и цианобактерий это осуществляется образованием поперечной перегородки, разделяющей материнскую клетку на две равноценные дочерние.
Деление происходит следующим образом. Вначале
синтезируется двуслойная цитоплазматическая мембрана. Затем на внутренней стороне клеточной стенки образуются два бугорка. Они интенсивно растут и, проникая кольцеобразно внутрь клетки между слоями образовавшейся цитоплазматической мембраны, образуют двойную перегородку, делящую клетку пополам.
Деление большинства грамотр тщательных бактерий
происходит путем перетяжки. При этом геномы расходятся по полюсам клетки, цитоплазматическая мембрана и клеточная стенка растягиваются, впячиваясь от периферии к центру клетки до контакта друг с другом. В результате клетка перешнуровывается на две дочерние. Деление клеток образованием перегородки или перетяжкой получило название бинарного в связи с формированием двух одинаковых дочерних клеток.
Кроме описанного бинарного деления, у бактерий известен другой способ размножения * почкование. Почкованием размножаются бактерии родов Hyphomicrobium, Pedomicrobium и других, объединенных в группу почкующихся бактерий. Эти организмы имеют вид вытянутых палочек (0,5х 2 мкм), иногда грушевидных, оканчивающихся гифами, или простеками (выростами).
Размножение у этих бактерий начинается с образования почки на конце гифы или непосредственно на материнской клетке. Почка разрастается в дочернюю клетку, формирует жгутик и отделяется от материнской клетки. По достижению зрелого состояния жгутик теряется и процесс развития повторяется.
В отличие от бинарного деления при почковании исходная клетка остается материнской, а вновь образованная - дочерней. Между ними имеются морфологические и физиологические различия.
Актиномицеты размножаются фрагментами мицелия и спорами. У одних (род Micromonospora) единичные споры формируются на гифах вегетативного мицелия, у других (род Streptomyces и др.) цепочки спор образуются на концах гиф воздушного мицелия, так называемых конидиеносцах. Фрагменты мицелия и споры в благоприятных условиях влажности, температуры прорастают и дают начало новым организмам.
Нитчатые цианобактерии кроме бинарного деления размножаются участками трихом и гормогониями. Последние представляют собой укороченные нити, состоящие из мелких вегетативных клеток одинаковой формы и размеров. При отмирании средних клеток трихома (нити) гормогонии выскальзывают из чехла материнского трихома, растут, делятся, образуя новые трихомы. Гормогонии, в отличие от материнского трихома, не имеют гетероцист и никогда не окружены чехлом.
Независимо от того, каким путем идет процесс размножения бактерий, скорость этого процесса огромна: за 24 ч может смениться столько поколений, сколько у человека за пять тысяч лет. Скорость размножения зависит от многих условий и для каждого вида бактерий различна. При наличии в среде необходимых питательных веществ, благоприятной температуры и кислотности среды деление каждой клетки может повторяться через 20-30 мин (Е. coli). При такой скорости размножения из одной клетки за сутки возможно образование 472 * 1019 клеток (273, 72 генерации).
Интенсивное размножение имеет для бактерий большое биологическое значение. Оно обеспечивает сохранение микроорганизмов на земной поверхности. При наступлении неблагоприятных условий они погибают массами, но достаточно сохраниться где-нибудь нескольким клеткам, как при подходящих условиях они дадут большое потомство клеток.
Численность популяции микроорганизмов в естественных местообитаниях, например, в почве или воде, постоянно меняется в соответствии с изменением условий существования. Но в лабораторных условиях на питательных средах изменение численности популяции микроорганизмов происходит закономерным образом.

Бактериальные организмы уже давно освоили все известные среды обитания. Они находятся в воздухе, в воде, живут в других организмах. Но больше всего их в верхних слоях почвы. Количество этих организмов зависит не только от особенностей строения. Оно многократно увеличивается благодаря большой способности к воспроизведению. Каким способом размножаются бактерии, кратко будет изложено в статье.

Кто такие бактерии?

Эти организмы представляют собой одноклеточные, реже колониальные организмы. Устроены они достаточно примитивно. Поверхностный аппарат представлен мембраной и слизистой капсулой, а цитоплазма лишена митохондрий и пластид. Многие клетки имеют жгутик, с помощью которого бактерия может передвигаться.

Генетический материал

Бактерии являются прокариотами. Это означает, что их клетки лишены ядра. Но генетический материал в них все-таки присутствует. Скопления молекул ДНК находятся в определенной части цитоплазмы и называются нуклеоид. Другими словами можно сказать, что прокариоты имеют ядро без оболочки. Поэтому сложные биохимические процессы они не могут осуществлять. Однако это никак не сказывается на их способности к размножению.

Каким способом размножаются бактерии?

Бактерии размножаются Это основной и самый быстрый способ. Из одной материнской клетки через полчаса образуется две дочерние. А еще через такой же промежуток времени из двух дочерних снова образуются новые клетки. Это объясняет большое количество бактерий в природе.

При неблагоприятных условиях бактерии способны образовывать споры - клетки Изредка почкуются - образуют небольшие выпячивания, которые растут, превращаются во взрослых особей и отщепляются от материнской.

Каким способом размножаются бактерии, можно также рассмотреть на примере конъюгации. Это форма полового процесса. Заключается она в обмене наследственной информацией между клетками. Перед началом происходит удвоение кольцевой молекулы ДНК. Далее между клетками образуется цитоплазматический мостик, по которому одной клетки передвигается в другую. Там происходит обмен участками ДНК. В результате организм приобретает новые признаки, которые чаще всего являются для него полезными. Например, бактерии приобретают устойчивость к воздействию неблагоприятных факторов окружающей среды, вирусов или антибиотиков.

Живут и размножаются на корнях бобовых и злаковых растений. Внедряясь в корневую систему через пораженные участки или корневые волоски, они разрастаются и образуют выпячивания - клубеньки. Внутри них создается благоприятная среда для обмена веществ. Корень отдает бактериям органические вещества, а бактерии - азот, который так необходим для роста и развития растений.

Деление клетки надвое

Каким способом размножаются бактерии, зависит от их вида и среды обитания. Но надвое способны делиться все бактериальные организмы. Происходит этот процесс в несколько этапов и называется бинарным делением.

Перед началом деления кольцевая молекула ДНК удваивается. Другими словами, происходит репликация. Нуклеотид делится, дочерние ДНК расходятся. Врастая в цитоплазму, мембрана клетки располагается между молекулами ДНК. Именно она и делит клетку и ее содержимое пополам.

В сутки из одной клетки на свет появляется 72 бактериальных поколения. Если бы все эти бактерии оставались жизнеспособными, их биомасса составила бы около 5 т. В природе, естественно, этого не происходит и большинство бактерий погибает.

Вегетативное размножение

Строение также определяет то, каким способом размножаются бактерии.

Колониальные виды и цианобактерии (синезеленые водоросли) способны к вегетативному размножению. Таким способом чаще всего размножаются растения. Он заключается в отделении от целого организма его многоклеточной части.

Нитчатые виды цианобактерий образуют специализированные клетки, которые называются гетероцистами. Вегетативное размножение заключается в разрыве нитей, граница которых проходит в местах расположения гетероцист.

Кокки могут соединяться в цепочки, грозди или другие образования. Отрываясь друг от друга, они также размножаются.

Спорообразование

Бактерии размножаются спорами, которые образуются при наступлении неблагоприятных условий. Спорообразование - это не только способ размножения. Внутри споры создается особая среда, уменьшается содержание воды, приостанавливаются процессы жизнедеятельности. В таком состоянии спорам не страшны ни высокие температуры, ни ионизирующее излучение, ни воздействие химических веществ. Когда благоприятные условия наступают вновь, из спор выходят молодые бактериальные организмы. Таким образом, образование спор является дополнительной возможностью сохранить жизнеспособность клеток в непригодных для жизни условиях. Известны случаи, когда споры бактерий оставались жизнеспособны десятки и даже сотни лет.

Инцистирование

Еще одним способом защиты от неблагоприятных условий и способом размножения служит образование цист. Они представляют собой пузырьки с толстыми оболочками. В состоянии цисты бактерии могут находиться долгое время. При этом они не погибают от температур более 200 градусов. С наступлением обычных условий бактерия выходит из оболочки и начинает обычное бинарное деление.

Каким способом размножаются бактерии, это скорее решают условия окружающей среды. Когда не хватает питательных веществ и влаги, наблюдается избыточное содержание кислорода, воздух имеет слишком высокую или низкую температуру, бактерии используют процессы инцистирования или спорообразования. В комфортных условиях они делятся или размножаются вегетативно. Именно такое разнообразие способов размножения, к которым способны бактерии, обусловливает их количество в природе. Если бы процесс деления одной клетки бактерии не прекращался в течение 10 дней, они могли бы покрыть всю поверхность земного шара.

Известно много способов размножения, наблюдаемых у различных бактерий. У подавляющего числа представителей этой группы микроорганизмов размножение осуществляется путем деления клеток на две части.

В средней части физиологически подготовленной к размножению клетки за счет впячивания цитоплазматической мембраны образуется поперечная перегородка. Расщепляясь, она разделяет клетку на две доловинки. Образовавшиеся новые клетки могут быть несколько неодинаковыми по размеру, так как перегородка не всегда проходит посередине материнской клетки.

Кокки в процессе размножения последовательно делятся в одной, двух или трех взаимно перпендикулярных плоскостях. После деления они остаются в той или иной мере скрепленными друг с другом, в результате чего возникают сочетания кокков, отличающиеся по взаимному расположению (см. рис. 1): диплококки - парные кокки; стрептококки - цепочки кокков; тетракокки - по четыре кокка; сарцины - в форме правильных тючков по 8, 16 шт.; стафилококки - скопления, напоминающие грозди винограда. При очень слабой связи или ее отсутствии между возникающими при делении клетками образуются микрококки, во взаимном расположении которых нет никаких закономерностей. Они расположены поодиночке или в виде случайных скоплений по несколько экземпляров.

Палочки (бактерии, бациллы), подобно коккам, могут располагаться парами по длине - диплобактерии и цепочками - стрептобактерии. Большинство же палочек располагается одиночно, беспорядочно. По внешним очертаниям отдельные представители папочковидных заметно отличаются друг от друга. Известны палочки строго цилиндрической формы, бочковидные, с резко обрубленными, вогнутыми или заостренными концами и др.

Размножение делением не сводится только к удвоению числа клеток. Структурные элементы и вещества материнской клетки еще и перераспределяются между возникающими новыми клетками. Большая часть клеток нового поколения наследует бездефектные структуры родительских организмов, вторая - менее полноценные. В связи с таким распределением по прошествии нескольких циклов деления образуется какое-то количество нежизнеспособных клеток. Устайовлено, что доля таких клеток, приходящаяся на каждый цикл деления, составляет примерно 10 % общего числа.

Бактерии обладают большой скоростью размножения, которая зависит от условий питания, температуры, доступа воздуха и др.

При благоприятных условиях _клетка может делиться через каждые 20-30 мин, т. е. за сутки может произойти 48-72 цикла удвоения. Из одной клетки за это время возникло бы 4714169·10 15 клеток, через 36 ч микробная масса составила бы около 400 т.

Если бы размножение постоянно проходило с такой скоростью, то из одной клетки в течение 5 дней могло бы образоваться такое количество клеток, что общий объем их оказался бы равным объему всех морей и океанов.

Практически беспрерывного деления микробов не происходит. Размножению их мешают многие моменты: истощение питательной среды, накопление продуктов собственного обмена и другие физические, химические и биологические факторы внешней среды. Так, при снижении температуры на 10 °С скорость размножения снижается в 2-3 раза.

Попадая в новые условия, на свежий субстрат, микробы не сразу начинают размножаться. Проходит некоторое время до начала увеличения их числа (фаза задержки роста), в течение которого они приспосабливаются к среде обитания и подготавливают самую среду. После этого начинается бурное размножение, замедляющееся затем по мере исчерпания питательных ресурсов и накопления продуктов жизнедеятельности бактерий в среде.

Быстрое развитие микробиологической порчи продуктов - скисание, окисление, плесневение, гниение и др. - как раз и объясняется исключительно высокой скоростью размножения бактерий.



Похожие публикации